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By Hermon M. Parker
SUMMARY

The linesrized drag integrel for bodies of revolution at supersonic
speeds is presented in a double-integral form which is not based on
slender-body approximaetions but which reduces to the usual slender-body
expression in the proper limit. With the aid of a sultably chosen aux-
iliary condition, the minimm-external-wave-drag problem is solved for
a transition section connecting two semi-infinite cylinders. The pro-
Jjectile tip is a special case and is compared with the Von Kérmén pro-
Jectile tip. Calculations are presented which indicate that the method
of analysis gives good first-order results in the moderate supersonic

range.
INTROIXJCTION

In meking the slender-body approximastion to the linearized
supersonic-flow theory for bodies of revolution, a basic approximation
leads to replacing the axial source distribution with the cross-sectlonal-
area derivative. Slender-body theory therefore becomes linear in the
superposition sense for cross-sectlonal areas as well as for sources
or fields in contrast to linear supersonic-flow theory which is linear
in the superposition sense for sources or fields but not for areas.
Making the slender-body approximation, however, eliminates a large part
of the Mach number dependence of the results. Iighthill (ref. 1) has
shown thet this basic approximation, for sufficiently smooth bodies,
has the same mathematical order of accuracy as the linearized supersonic-
flow equation. Ward (ref. 2) has extended the generality of slender-
body theory by presenting & drag expression which is valid for a body
with a finite slope at the base. TLighthill (ref. 3) has, at the price
of a large incresse in complexity, modified slender-body theory to
include area-derivative discontinuities at a finite number of points.

In 1935 Von Kérmén (ref. 4) determined the minimm-wave-drag pro-
jectile tip. Iater Sears (ref. 5) snd Haack (ref. 6) determined minimum-
wave-drag shapes for projectile tips and closed bodies of revolution
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subject to various combinations of auxliliary conditions of constant
length, constant caliber, and constant volume. The Von Kdrmén tip and
the Sears-Haack bodies are based on slender-body theory. In contrast
to the minimum-drag bodies of given volume, which are accepted as
reasonably good first-order results, the minimum-drag projectile tips
and open-nosed bodies which have been derived from slender~body theory
are subJject to more severe restrictions on the range and conditions for
validity. Busemann (ref. 7) pointed out this fact for the Von Kérmdn
projectile tip in 1941. In the late 1930's Ferrari made studies of the
minimum-drag prolectile tip and length-caliber body problems. Recently,
Ferrari (refs. 8 and 9) has considered the length~caliber body and
ducted-body minimum-dreg problems on the basis of linear theory without
resorting to slender-body spproximations. He obtains source-distribution
functions which involve elliptic integrals that have to be treated
mmerically.

This paper presents the linearized-drag Iintegral for bodies of
revolution in & double-integral form which 1s not based on slender-
body epproximations but which reduces to Ward's drag expression in the
proper limlt. With the aid of a sultebly chosen suxiliasry condition,
the minimum-external-wave-drag problem for a transitlion section con-
necting two semi-Infinite cylinders is solved. The source distribution,
the minimum-wave drag, the slopes at the ends of the section, and the
radivs at one intermediate point are obtalned in terms of elementary
functions. The entire shape 1s given in an integral form amensble to
numerical evaluation.

SYMBOLS
c constant factor in source-distribution function, ft/sec
Cp drag coefflclent
D drag, 1b
£ source-distribution function
' derivative of f with respect to its argument
M free-stream Mach number
r radius in cylindrical coordinates
R general radius of point on body

Ry radius of downstream cylinder
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Rz
A'(x),4"(x)
U

Vr

EsT
EorTo
¢

All distances are made dimensionless by measuring them Iin the unlts

radiues of upstream cylinder

first and second derivatives of cross-sectional area
free-stream velocity, ft/sec

radial velocity, ft/sec

axial velocity, ft/sec

axiel distance in cylindrical coordinates

position of first disturbance on control surface

axigl distance for general point on body

variation in derivative of source-distributlion function
free-stream density, slugs/cu ft

arbitrary constant

dummy variables of integration

position on axis where sources begin

disturbance potential

of length of the transition section.

ANATYSIS

Drag Integral

The lineariged-flow equation for the case of axial symmetry is

(ref. k)

R 13 _ 2
SR, 1P 22729 1
dr2 tr or P dx® (1)
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where ¢ is the disturbance potential, ﬁ2 = M2 - l, and M is the
free-stream Mach number. The general solution of equation (l) is
(ref. 10)

Y -Br
¢(x,r) =\/p £(x - Br cosh u)du = - fo B f(ﬁ)dg . (2)
o0 -0 V<x _ E)E _ ﬁ2r2

The corresponding disturbance velocities are

%g = vx(x,r) = Jfo £'(x - Br cosh u)ydu = - fo-Br fr(ﬁ;dQ (3)
. = Y- 0 - par2

and

s -

fx’ﬁr £'(8)(x - t)ag

a¢ O
——=vp(x,Tr) =-f £'(x - Br cosh u)p cosh u du = 3
o - Ux - £) - p2r2

or

(%)

The general solution 1is interpreted physically as the dlsturbance
potential of a dilstribution of axial sources. The source-dlstribution
function f£(¢) 1s fixed by satisfying the boundary condition that the
body surface be a stream surfeace.

Applying the momentum and continuity theorems to the fluid within
a8 cylindrical surface of radius equal to the radlus of the downstream
cylinder R;p (hereafter referred to as the control surface) and using
the fact that free-stream conditions prevall at the two ends of the

Eylinder, x = and x = -», yleld the usual expression for the drag
ref. 4)

00

D=-2¢ JF ﬁRle(x:Rl)Vr(x:Rl)dx (5)

If a position x = L on the control surface is chosen so that, for
x 2 L, either vy or vy vanishes on the control surface, and if
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is the position of the first disturbance on the control surface,
equation (5) reduces to

L
D = -2x f pR1vx(%,R1 )vr(x,Ry Jdx (6)
X0

Substituting expressions (3) and (4) for the velocities into equation (6),
where §£5 = Mg = Xo - PRy, the position on the axis where the sources

begin, yields

D = Ao fox-Bﬁl £'(8)(x - ga f"'ﬁﬁl £'(nan |
%"t flx- 02 - 22| T x - )7 - g2

or (1)

L} rx-gR; x~BR1 (&) (n)(x - g)dg dn
D = 2xp ax (8)
fxO l;o f

o fx - ©)2 - p2R;2 Y(x - 1)? - %2

The basic slender-body sapproximastion reduces the integral over §

in equation (7) to f£(x). The use of equation (4} for small values of r
V-

and the boundary condition %% = E%- glves f(x) proportional to the
axiel derivetive of the cross-sectional area. The slender-body spproxi-
mation thus reduces the integral of equatlion (8) to a double integral
(over x and 7). In principle, the integrel in equation (8) may be
reduced to a double integral over £ and 1 by interchanging the order
of integration and performing the integration over x. When this process
is attempted in equation (8), however, the integration over x involves

elllptic integrals and no essential advantage 1s gained.

However, the drag integral may be reduced to a double integral in
the following manner. Equation (8) is rewritten with the dummy vari-
gbles £ and 1 interchsnged. Addition of the interchanged and
original expressions and division by 2 yleld

_ﬁR ...BR t 1 - -
D”pfﬂfx 1/“‘ 1 £Ye)E (n)(x - &+ x - q)dE dn (9)

X €0 Mo . V(x - 6)% - g2 Ylx - n)? - pR;2
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In the slender-body approximation, equation (12) reduces to Ward's
drag expression as follows. Use of the expression for the radial
velocity (eq. (%)) for small values of r and the boundary condition

£(x) = % A'(x) (13)

where A'(x) is the axial derivative of the cross-sectional area. For
small values of Rj, PBR; may be neglected in the limits of the
integrals in equation (12) end the cosh~l factor may be approximated

by

(L - &)(L-1q) - p%R,y°

cosh~1 = log EL - )L - 'ﬂﬂ -
BR1(& - n)
log'g- 'ql— logiﬁzi]: (1)

Simple manipulation, based on the assumption that A'(¢) 1s continuous
and A'(t,) = 0, gives the Ward drag formula

pU2 L L n 1
D= - u—f f A"(£)A"(n)log|t - nfag an +
T YEs Yo

L 2 2
;—3—2 A’(L)fg A"(8)1log(L - g)at - ;J—EL’(L)] log ﬁ—E} (15)
(o]

Minimum-Dreag Problem

The problem of determining the shape of a transition sectlon con-
necting two semi-~-infinite cylinders for minimum external wave drag maey
be formulated in the following way. (See fig. 1.) The upstream and
downstream semi-infinite cylinders are of radius Rp &and R;, respec-
tively. The length of the tramsition section is taken as the unit in
which all distances are messured. The cylinder of radius Rj is chosen
as the control surface.
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Figure 1 is drawn for the case Rpo < Rj. However, the statement
¢of the problem is the same as for Rp > Ry since only the appropriate
chenges in sign occur. ZEquetion (12) for the drag becomes

~BR; Ll-BR - o 2
D = xp fl . f £'(&)f' (n)eosh™L (1- &)@ -n) - %Ry de dn
-BR2 -BRo PR1(E - 7)

(16)

The auxiliary condition for the minimum-wave-drag problem is the
requirement that the points x =1, r =R; and x =0, r =Rp be
on the same stream surfaece. In terms of maess flow this condition
requires that the free-stream mass flow between the control cylinder
of radius Rj and the upstream cylinder of radius Rp equals the mass
flow out of the control cylinder between x = B(Ry - Rp) and x = 1;
that 1is,

PUx(R;2 - Ry2) = fl 2xpRyve(x,R; )dx = Constent (17)
8(R1-Rp)
or
1 -BR t -
f fx T ei(e)(x - g)ae . _ g(Rlz - RoD) = Constant (18)
2
B(R1-Rp) V-BR2  |/(x - £)° - p2R:2

Equation (18) is a particularly convenient form of the auxiliary
condition in that the source-distributlon function is the only unknown
involved. A direct integration of the usual boundary condition would
lead to an suxlliary condition involving, in addition, the unknown
shape of the section. Without further approximstions, the minimum-~
drag problem would be unmanageeble. It appears impossible to obtain
en auxiliary condition of constant volume Involving the source-distribu-
tion function as the only unknown.

Interchanging the order of integration in the left member of equa-
tion (18) and integrating over x yileld '

-8R .
f Lol - 0F - sEar - YRR - rD) - Comstent (29)
-fRo
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An integration by parts, with f(-pRp) = 0, yields

1-
f BRy £(q)dn = A = Constant (23)
“BR2 (g - (L - )2 - pRy2

The integral equation (23) is the same equation that appears in the
minimim-induced-drag problem In 1ifting-line airfoil theory.

‘The solution of the integral equation

d[b EEZJEZ = Constant
a £-Y¥

ls

Cy + C1L
o - ¥)(y - a)

Therefore, the solution of equation (23) is

£(n) = (Cn + cﬁi/EiRl—'—“ (24)
n + BRp

The condition thet f£(-pRpo) = 0 requires that C1 = CpRp; therefore,

F(y) =

£(n) = CYn + BRR)(L + PRy - 1) (25)

The source-distribution function for minimum wave drag is part of an
ellipse. The constant C is fixed by satisfying the suxillary condi-
tion, equation (19). The final result for the source-distribution
function for minimum wave drag is

ll-U(RlE - R22>
7(1 - BRy + BRoJ)(1 + 3pR1 + BRo)

£(n) = V(n + BR2)(1 + BRy - n)  (26)

Figure 2 which has an arbitrary vertical scale shows the source distribu-
tion corresponding to the transition section of minimum wave drag.



Minimum-Drag Shape
The expression for the minimum-dreg shape is analogous to the auxiliary condition given by

equation (17) except that a control surface of arbitrary radius R 1s used, where R is the
radius of the section at x =X (see fig. 1); the shape is glven by

fx 2pRvy(x,R)dx
B(R-Rp)
X ~BR 2" (£)(x - 8)at
P dx (27)
‘/;(R~Re) /’:RE f(x - €)% - p2re

Interchanging the order of integration, integrating over x, and substituting the source-
distribution function yield

pUﬁ(Re - Rge)

il

- -pr (L * BR1L - BRp 2 o
82(R2 - Ry?) = 8p%(r12 - R2) %-pR ( > - g)vfx - &) - 8%
%(1 - BR1 + ARo) (1 + 3pRq + BRQ) -BRo V(g + ﬁRg)(l + BRy - &)
(28)

Since all the radii in equation (28) are multiplied by B, one calculation gives a famlly of
shapes for which, at a given value of X, PR(X) = Constant. Thus the minimum-drag shape obeys
the G&thert simlilarity rule (ref. 11).

At the general point (X,R), the integral in equation (28) involves elliptic integrals and
cannot be evaluated in elementary form. However, at one particular value of X, corresponding
to the center of the source-distribution ellipse, the integral reduces to elementary functions.
Thus, for

g o L+ BB - R
2

68T¢ NI VOVN



a2R2 = (p%R2 + p2Ro2)(1 + BRy + BRp)> - Bpl4R;2RH2

2 El + PRy + pR2)2 - 2(p%R2 + ,32322):’

(29)

Equation (28) may be solved by numerical-graphical methods. By a change of variaeble of
the form

cos ©

_1+pRy-pRy 1+ PRy + PRy
2

: 2

equation (28) is converted into the following form suitable for numerical integration:

E_lfé(x-ﬂﬁ)—(HBRl-ﬂRaH
1:
B2(R2 - Bo?) = 4p2(R12 - R2)(L + pRy + BRp) L weerte

2
cosGL/(x-l-bﬂRl‘BR2—1+BR1+BR2<:059> -BaRad.B (30)
(1 ~ BRL + BRp)(L + ARy + PR2) [

2 2

The slope of the transition sectidn at the general point (X,R) is found by differentiating
equation (28). The result is

-1

X~pR 1+ PR - fRo . X-gR 1+ BRy - PRp _
a(em) _ ng (2 D(x - thas - ﬁc—f (R By )as -
ax K U

-FR2 |/(§ + BRo)(1 + pR) - &) \/(x - £)% - g2 -BR2 V(& + BRp)(L + BRy - £) %x - 6) - pom?

ot

68T NI VOVN
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For the general point, equation (31) i1s not integrsble in elementary
form. However, at the downstream end of the section (x = 1, R = Rj)

it may be integrated directly. The result is

-1
[?(EB?] ) VER1(1 + BRy - BRp)(1 + Ry + 3BRp) .
=1

™ /2(p2R,2 - p2Ro2)\L + pR; + BRp

(32)

R=R;

At the upstream end of the section, equaetion (31) may be evaluated by
a sultsble limiting process. For example, if R =Ro and X = €
(wvhere € i1s & small quantity)}, the integrals in equation (31) mey be
evaluated if € 1is neglected in comparison with quantities of the
order of unity. After the eveluation, € is gllowed to vanish, and
the result is

-1
Ifﬁ;a) by VEEE(l - BRy + BRoJ(1 + 3Ry + BRy) (33)
%22 V2/1 + Ry + BRo(p2R12 ~ BZRo2)

For Rp = 0 (the projectile tip), the front slope is equal to the
sloie of the Mach cone. The back slope is different from zero for
R1 # Ro-

Minimim Wave Drag
The expression for the minimum wave drag 1s obtained by inserting

the source-distribution function (eqg. (26)) into the drag integral
(eq. (16)). The expression for the drag of the transition section is

21 pU2<Rlz - 322)2
D

= (34)
(1 - BR1 + BRp)(1 + 38R; + PRp)

end the drag coefficient (based on the area of the section projected on
& plane normal to its axis) is

o Hm?-n]

(1L - pRy + BRo)(1 + 3PR; + BRo)

Cp (35)
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Reversibility

The results for the reverse-flow case may be obtained formally -
from the preceding direct-flow case by interchanging Rj and Rp. If,
in sddition, X 18 replaced by 1 - X, the X-station will be measured
from the same end of the configuration. The transition-section-shape
expression (eq. (28)) can be shown to be an invariant relastion between
X and R under the transformation

Ri—>Ro

-1 - X

Since the present analysis is a linear trestment, the reversibllity of
the minimim-drag shape cannot be considered as established to an order
higher than the first.

The drag coefficlent (eq. (35)) is not symmetrical in R; and Rp.

However, a2cD is symmetrical to the first order in the smell gquanti-
ties PR} and BRp or, if BR; and FRpo are not small, BECD is
symietrical to the first order in the quantities PR} - PRz and

BRo - BR1. The minimum wave drag thus is the same to the first order
in the appropriste smell quantities for the direct-flow and reverse- v
flow cases. ’

DISCUSSION OF RESULTS

The drag integral (eq. (12)) presented in this paper depends upon
the source-distribution function in the same way (except for slightly
different weights of the kernel functions) that the slender-body drag
expression (eq. (15)) depends upon the cross-sectional-srea derivative.
Since bodies with area-derivative discontinuities can be generated by
continuous source dlstributions, equation (12) gives finlte drag for
certsin types of bodiles (for example, bodies with shoulders forward of
the base) for which the usual slender-body drag expression diverges.
The drag Iintegral presented herein is thus appliceble to a larger class
of bodies than the Ward drag expression.

Some indication of the range of vallidity of equation (12) is given
by a comparison of the values of drag calculeted by various methods for
several cones. Figures 3(a), 3(b), and 3(c) present cone drag coeffi-
clents plotted against pR1 for semivertex cones of 59, 10°, and 15°,
respectively. The drags are calculated by the following methods: .
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Method A - The drag integral (eq. (12)) with mass-flow contimuity
(eq. (17) with Ro = 0) used as the boundary condition. Since the con-
tinuity condition is used in deriving the drag integral, this method
uses a consistent boundary conditiom.

Method B - The solution of the linearized supersonic-flow equa-
tion for a cone (f£'(¢) = Constant) used with the exact boundary condi-
v
tion (£ = —= _ ) and the exsct pressure equation. This method may be
dx U + vy

called the exact linear method. Van Dyke (ref. 12} has presented cone
drags by this method.

Method C - The exact characteristlics method for conicel flow as
glven by reference 13.

Method D - The drag integral (eq. (12)) with the boundary condi~
v
tion dr _ —ZX . This method was used only for the 5% cone.
dx U + vy

Each of the figures also shows the drag of the minimm~Adrag projectile
tip of the same thickness ratio as was determined in the present analysis
(curve I in fig. 3). '

Figures 3(a), 3(b), and 3(c) show that the drag integral with the
continuity boundary condition {method A) gives cone drags closer to
the exact value (method C) than the exact linear method (method B) for
values of @Ry less than approximately 0.30. From a comperison of
methods A and D for the 5° cone, the divergence of the cone drag calcu-
lated by method A as pR;j—>1.0 is seen to be caused by the use of the

mass-flow continuity boundary condition. These results indicate that
equation (12) with equation (17) as the boundary condition gives good
first-order results for Mach numbers sabove the transonic range and less
then the Mach number at which the tangent of the Mach angle is less

then epproximstely three times the slope of the body, that is, a moderate
supersonic range.

Projectile tip (Ro = O).-~ Figure 4 presents two families of minimum-

drag projectile-tip shapes ZBRl = 0.2 and 0.4) calculated by equa-

tion (30). The Von Kérmén projectile tip and the limiting case @Ry = 1.0
are shown for comparison. The Mach number and thickness-ratio dependence
are related by the fact that the minimm-drag shape obeys the GSthert
gimilarity rule (ref. 11). The slope at the base varies from zero to

the cone slope as BR; varies from O to 1.0.

In both the Von Kérmén anslysis and the present analysils the basic
assumptions of linearized theory are strongly vioclated at the nose of
the projectile tip. Specific results of elther analysis at the nose
therefore cannot be accepted with confidence. However, ilnasmuch as
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linear theory often qualitatively predicts correct trends even outside
its renge of quantitative validity, it is interesting to note that in
both analyses the nose of the minimum-drag projectile tip is as blunt
as the analysis will allow (infinite slope for the Von Kérmén tip and
tangent to the Mach cone in the present analysis). It is probebly
true that the exact shape of a projectile tip for minimum wave drag
has & blunt nose.

Figure 5 presents the ratio of the minimum-wave-drag coefficient
based on the base area to the Von Kérmén drag coefficient as a function
of BRj. The ratio has a minimum velue at PBR; = 0.33 end diverges

as PR31—>1.0. The results for the cone discussed previously suggest
that the drag diverges as pBR1—>1.0 because of the use of mass~-flow
continuity (eq. (17)) for the boundary condltion and that the results
are reasonebly good for PBR; 1less than about 0.3.

General case.- Figure 6 presents the radius at an intermediate
point and the slopes at the two ends of the minimim-external-wave-drag
transition section for four configurations with BR1 - BRo = O.h. Fig-
ure 7 presents these three quantities for five configurations for which
BR] - BRp = 0.05. Equations (29), (32), and (33) indicate that for

- BR R - BR
BR1 - BRo < % and fRy + BRo > (BRl BR)(1 + BR) - PRp) the shape

1 - 3(fRy - BR2)

is a reverse curve lying within the truncated cone connecting the {two
eylinderse for a distance downstream of the nose vwhich increases as

BR] - BRo decreases. The entire shape was calculated by equation (30)
for the case pBR] - BRp = 0.05 and BRy + BRp = 0.118, which corre-
sponds to the minlmum front slope for BR] - BR2 = 0.05 (shown in

fig. 7). This reverse-curve effect is more pronounced in the range

of small values of . BR} - PRp, the range where the linearized treatment
is certainly correct.

For a comparison with the general case, the drag of a truncated-
cone section for AR] - BRp = 0.05, pBR) + BRo = 0.118, and B = 1 was
calculated by the method of reference 14. The truncated-cone drag
coefficient (0.0228) is 18 percent higher than the minimum dreg
coefficient (0.0193).

CONCLUDING REMARKS

The drag Integral for bodies of revolution at supersonic speeds 1s
presented in a double-integral form depending explicitly upon the
source-distribution function. The drag integral 1s applicable to a



A

NACA TN 3189 17

larger class of bodies than the usual slender-body drasg expression and
reduces to the Ward drag expression in the proper limit. Resulis for
cones indicate that the drag integral with mass-flow continuity as the
boundary condition gives good first-order results in the moderate
supersonic range.

The minimum-wave-drag problem for a transition section connecting
two semi-infinite eylinders is solved with the aid of a suitably chosen
auxiliary condition. The source distribution, the minimum drag, the
slopes at the two ends of the section, and the radius at an intermediate
point are obtained in terms of elementary functions. The entire shape
is obtalned in an integral form amenable to numerical evaluation. The
minimum-drag shape obeys the GOthert similarity rule. The minimum-drag
shape and the minimum drag are unchanged to the first order when the
flow direction is reversed. The projectile tip is a special case and
is compared with the Von Kérmén projectile tip.

Langley Aeronsutical Iaboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., March 1, 1954.
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APPENDIX o

INTEGRATION IN EQUATION (11i)

The integral of equation (11) is

L - -

I - f (x £+ X :-n)dxz (a1)
E+8R ‘/ - - - -
Tl"‘BRi X [3233_2 V(X T]) B2R12

where the lower limit is the larger of the two quantities & + BR; or
1 + BR1. The equation msy be evaluated in the following manner. In
order to.convert the radicand in the denominator of the integrand into
a quadratic function of the square of the integration variable, the
variable 1is changed by using

E + n

XxX=8 - (A2)

Substitution of equation (A2) into equation (Al) gives

S . .
I=fL 2 (43)

Js, l/sh ] 2K§;_n)2 . BQRJ_EZlSa i KE';—TI)Z _'32R12]2

where Sy~ and Sg are the appropriste limits for the varigble 8.

Since the numerator of the integrand in equetion (A3) is an odd
polynomial in S, considerable 31mplif1cation is effected by taking a
new varisble =z -proportional to 82 » such that

_ e
52 =z + (——5 - T‘) + B2Ry2 (ak)
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Substituting equation (Ak) into equation (A3) yilelds

21,
I =fZL dz = lecosh~t|—— 2% (85)
2 pR1(E - 1)

0 22 - p2R12(¢ - 1)? ]
0]

or

L
- ) - ) - ER 2 I - _ _ o
T = |cosh~1 (x - )G - m P = cosh~1 ( £)(L - n) - B2R;
R - 1) R1(E -
BR1(E - n £+Ry pR1(E - )
THRR1

(a6)
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Figure 2.- Source distribution (arbitra.ry vertical scale) corresponding
to transition section of minimum drag. Ellipse of which the distribu-
tion is a part is shown by dashed curve.
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Figure 3.- Comparison of drag coefficients for three cones determined

by several methods and for minimm-drag projectile tip of the same
thickness ratio as the cone. Method A - Drag integral with mass-
flow=continuity boundary condition. Method B - Exact linear method.
Method C - Exact characteristics method from reference 13. Method D ~
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Figure 3.- Continued.
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Figure 4.~ Minimum-drag projectile~tip shapes. Von KérmAn projectile tip
is shown for comparison.
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Figure 6.- Radius at intermediate polnt and slopes at two ends of minlmum-
external-drag transition section for four configurations. pR) - BRp = O.k.
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Figure T.- Radius at intermediate point and slopes at two ends of minimum-
external-drag transition section for five configurations. PBR; - BRo = 0.05.
Entire contour shown for BRj] + BRo = 0.118.
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